
SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 1

Concurrent Programs

• reasoning about their execution

• proving correctness

• start by considering execution sequences

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 2

Execution Sequences

• consider the following instruction sequences executed by threads T0 and T1

• n is a shared global variable with initial value 0

• assume that each statement [n = n + 1] is executed atomically

• n is effectively incremented by one thread at a time

• statement execution can be interleaved 20 different ways

• as each statement is atomic, n will always end up with the value 6, irrespective of
how the execution of the statements are interleaved

T0 T1

n = n + 1 n = n + 1

n = n + 1 n = n + 1

n = n + 1 n = n + 1

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 3

Execution Sequences…

• one possible interleave

• n = n + 1 is not normally executed atomically by a CPU

• CPU will read [load] n from shared memory into a CPU register, increment the register
and then write [store] the register back to memory

• non atomic read-modify-write operation

T0 T1

n = n + 1 n = 1

n = n + 1 n = 2

n = n + 1 n = 3

n = n + 1 n = 4

n = n + 1 n = 5

n = n + 1 n = 6

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 4

Execution Sequences…

• n = n + 1 is split into two steps [t = n and n = t + 1]
• simulates a non atomic read-modify-write sequence
• each thread now has its own local variable t0 and t1

• statements can be interleaved 924 ways
• what are the resulting minimum and maximum values for n?
• max n = ?? min n = ??
• max n = 6 min n = 2

T0 T1

t0 = n t1 = n

n = t0 + 1 n = t1 + 1

t0 = n t1 = n

n = t0 + 1 n = t1 + 1

t0 = n t1 = n

n = t0 + 1 n = t1 + 1

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 5

Execution Sequences…

• an execution sequence resulting in n = 6

T0 T1

t0 = n t0 = 0

n = t0 + 1 n = 1

t0 = n t0 = 1

n = t0 + 1 n = 2

t0 = n t0 = 2

n = t0 + 1 n = 3

t1 = n t1 = 3

n = t1 + 1 n = 4

t1 = n t1 = 4

n = t1 + 1 n = 5

t1 = n t1 = 5

n = t1 + 1 n = 6

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 6

T0 T1

t0 = n t0 = 0

t1 = n t1 = 0

n = t1 + 1 n = 1

t1 = n t1 = 1

n = t1 + 1 n = 2

n = t0 + 1 n = 1

t1 = n t1 = 1

t0 = n t0 = 1

n = t0 + 1 n = 2

t0 = n t0 = 2

n = t0 + 1 n = 3

n = t1 + 1 n = 2

Execution Sequences…

• an execution sequence resulting in n = 2 (how many such sequences exist)?

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 7

Execution Sequences…

• Check execution use Promela/Spin

• (_nr_pr == 1) waits until the two instances of p0
are terminated and then checks assert(n > 2)

• in verification mode, Spin will execute all
possible interleaves and stop if assert(n > 2) is
false [will stop if n = 2, 1, …]

• this sequence can then be replayed for analysis

• change to assert(n > 1) and use verification
mode to confirm that the resulting value of n is
always greater than 1

• DEMONSTRATE ispin.tcl [relatively easy to install
on Windows and Ubuntu; provides a basic user
i/f to spin]

int n = 0;

proctype p0() {
int t;
t = n;
n = t + 1; // n = n + 1
t = n;
n = t + 1; // n = n + 1
t = n;
n = t + 1; // n = n + 1

}

init {
run p0();
run p0();
(_nr_pr == 1);
assert(n > 2)

}

Promela source code

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 8

Execution Sequences…

• modify to use a for loop [constructed from a do
statement] to increment n from 0 to N

• each process executes the read-modify-sequence N times

• can confirm (n >= 2) && (n <= 2*N)

• if N large, verification may not complete [typically runs
out of memory]

• need to increase memory allocated to Spin or use an
alternative mode which uses less memory [eg.
compresses state data], but is more compute intensive

• can also change number of processes [add run p()]

• minimum result for n is the number of processes

#define N 10

ìnt n = 0;

proctype p() {
int t;
int i = 0;
do
:: (i >=N) ->

break;
:: else ->

t = n;
n = t + 1;
i++

od
}

init {
run p();
run p();
(_nr_pr == 1);
assert (n > 1)

}

Promela source code

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 9

Execution Sequences…

• using statement merging
• Starting p0 with pid 1
• 1: proc 0 (:init::1) count0.pml:20 (state 1) [(run p0())]
• Starting p0 with pid 2
• 2: proc 0 (:init::1) count0.pml:21 (state 2) [(run p0())]
• 3: proc 2 (p0:1) count0.pml:11 (state 1) [t = n]
• 4: proc 1 (p0:1) count0.pml:11 (state 1) [t = n]
• 5: proc 2 (p0:1) count0.pml:12 (state 2) [n = (t+1)]
• 6: proc 2 (p0:1) count0.pml:13 (state 3) [t = n]
• 7: proc 2 (p0:1) count0.pml:14 (state 4) [n = (t+1)]
• 8: proc 1 (p0:1) count0.pml:12 (state 2) [n = (t+1)]
• 9: proc 2 (p0:1) count0.pml:15 (state 5) [t = n]
• 10: proc 1 (p0:1) count0.pml:13 (state 3) [t = n]
• 11: proc 1 (p0:1) count0.pml:14 (state 4) [n = (t+1)]
• 12: proc 1 (p0:1) count0.pml:15 (state 5) [t = n]
• 13: proc 1 (p0:1) count0.pml:16 (state 6) [n = (t+1)]
• 14: proc 2 (p0:1) count0.pml:16 (state 6) [n = (t+1)]
• 15: proc 2 terminates
• 16: proc 1 terminates
• 17: proc 0 (:init::1) count0.pml:22 (state 3) [((_nr_pr==1))]
• spin: count0.pml:23, Error: assertion violated
• spin: text of failed assertion: assert((n>2))
• #processes: 1
• 18: proc 0 (:init::1) count0.pml:23 (state 4)
• 3 processes created
• Exit-Status 0

T0 (P1) T1 (P2)

t0 = n t0 = 0

t1 = n t1 = 0

n = t1 + 1 n = 1

t1 = n t1 = 1

n = t1 + 1 n = 2

n = t0 + 1 n = 1

t1 = n t1 = 1

t0 = n t0 = 1

n = t0 + 1 n = 2

t0 = n t0 = 2

n = t0 + 1 n = 3

n = t1 + 1 n = 2

first two steps swapped compared
with slide 6

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 10

Spin states stored and states matched

• consider a simple example with two processes
[process 0 and 1] each with two statements

• number of interleaves 6

• draw a state transition diagram where each
state represented by a triple (PC0, PC1, n)

• arcs represent executed statements

eg. (n = n + 1)p statement/step executed by
process p

int n = 0;

active[2] proctype p0() {
n = n + 1; // PC = 0
n = n + 1; // PC = 1

} // PC = 2 (process ended)

start 2 instances of p0

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 11

Spin states stored and states matched…

• assume a depth first search

• new states coloured green

• matched states, which have already been
visited, coloured red

• remaining states coloured grey

• 9 states stored [green], 4 states matched [red]

• NOT the same as counts reported by Spin

 13, 4 with partial order reduction

 13, 6 without partial order reduction state transition diagram

0, 0, 0

1, 0, 1

2, 0, 2

2, 1, 3

2, 2, 4

1, 1, 2

2, 1, 3

2, 2, 4

0, 1, 1

1, 2, 3

2, 2, 4

0, 2, 2

1, 2, 3

2, 2, 4

1, 1, 2

1, 2, 3

2, 2, 4

2, 1, 3

2, 2, 4

(n=n+1)0

(n=n+1)0

(n=n+1)1

(n=n+1)1

(n=n+1)1

(n=n+1)1

(n=n+1)1(n=n+1)0

(n=n+1)0

(n=n+1)1

(n=n+1)1(n=n+1)0

(n=n+1)0

(n=n+1)0

(n=n+1)0 (n=n+1)1

(n=n+1)0(n=n+1)1

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 12

Spin states stored and states matched…

• Spin uses an extra state/step to terminate a process [after last statement has been
executed]

• why?

• processes are created in source code order [apart from init, if present, which is always
process 0]

• terminated in reverse order [process 1 must be terminated before process 0]

• use T for the PC of instruction used to terminate process

• processes numbered 0 and 1 as per previous example

• modified state transition diagram to match Spin

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 13

Spin states stored and states matched

• 13 stored states [in green]

• 6 matched states without
partial order reduction [in red]

• 4 matched states with partial
order reduction

• red dotted states can be
skipped [partial order
reduction]

• (n = n + 1)0 ; T1 results in the
same state change as T1 ; (n =
n + 1)0 as statements/steps
independent of each other

0, 0, 0

1, 0, 1

2, 0, 2

2, 1, 3

2, 2, 4

1, 1, 2

2, 1, 3

2, 2, 4

0, 1, 1

1, 2, 3

0, 2, 2

0, T, 2

1, 1, 2

1, 2, 32, 1, 3

2, T, 4

T, T, 4

2, T, 4

T, T, 4

2, 2, 4 1, T, 3

2, T, 4

T, T, 4

2, T, 4

T, T, 4

2, 2, 4

2, T, 4

T, T, 4

2, 2, 4 1, T, 3

2, T, 4

T, T, 4

2, T, 4

T, T, 4

1, 2, 3

1, T, 3

2, T, 4

T, T, 4

2, 2, 4 1, T, 3

2, T, 4

T, T, 4

2, T, 4

T, T, 4

T1(n=n+1)0

T1 (n=n+1)0T1(n=n+1)0

T1 (n=n+1)0

(n=n+1)0

(n=n+1)0

(n=n+1)1

(n=n+1)1

T1

T0

(n=n+1)1

(n=n+1)0 (n=n+1)1

(n=n+1)1

T1

T0 T0 T0

(n=n+1)1

(n=n+1)0 (n=n+1)1

(n=n+1)0 (n=n+1)1

T1

T0 T0

T0

T0 T0 T0 T0

T1

T1

(n=n+1)0

(n=n+1)0 (n=n+1)0

T1 (n=n+1)0 (n=n+1)0

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 14

Synchronisation

• spin lock: ensures that only one thread can access a particular shared
data structure at a time [serialise access]

• barrier: ensures that no thread advances beyond a particular point in
a computation until ALL have arrived at the barrier - used typically to
separate program phases

• synchronization constructs divided into two classes

 blocking: de-schedule waiting thread and schedule another
thread to run

 busy-wait: threads repeatedly test a shared variable to
determine when they can proceed

• busy-wait preferred when scheduling overhead exceeds expected
wait time

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 15

Spin Lock Implementations without Atomic Instructions

• Peterson algorithm for TWO threads [also google Dekker’s algorithm]

• if both threads execute “flags[id] = 1; last = id” and then enter while statement last will
be used to determine which thread gets lock

• is there any reason why this might NOT work?

what happens if the variable
last removed?

what happens if the
statement flag[id] = 1
removed?

check using Spin

int flag[2]; // initially 0
int last;

void acquire(int id) { // id is the thread ID [0 or 1]
int j = 1 - id; // 0 -> 1 and 1 ->0
flag[id] = 1; // want lock
last = id; // other thread has priority
while (flag[j] && last == id); // NB last == id

}

void release(int id) {
flag[id] = 0; // release lock

}

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 16

Peterson Lock

• Promela code for Peterson lock

• two active processes

• _pid is the process number [0 or 1 in this case]

• although processes never end, state will
eventually be repeated

• does code match what the hardware does?

Promela code

//
// Peterson lock
//

bool flag[2]; // 0 initially
byte last; // 0 initially

active[2] proctype P() {

byte i = _pid; // process #
byte j = 1 - i; // other pid

again:

flag[i] = 1;
last = i;

(flag[j] == 0 || last == j); // wait until true

flag[i] = 0; // release lock

goto again

}

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 17

Peterson Lock…

• desirable properties

 safety "nothing bad ever happens"
mutual exclusion not violated

 deadlock free "in every state of every computation, if processes are trying to
enter the critical section one will eventually succeed“
eg. thread1 one tries get lock A then B and thread2 B then A

 liveness/livelock "something good eventually happens"
processes continually enter critical section

 starvation free "if in every state of every computation, if a process tries to enter
its critical section it will eventually succeed"

• will show how Spin can be used to test for these properties

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 18

Peterson Lock…

• safety check for mutual exclusion

• first approach

• declare global variable ncs and add following code to critical section

ncs++;
assert(ncs == 1);
ncs--;

• run model and verify assertion NOT violated

• comment out line containing "flag[i] = 1;" to force a mutual exclusion error

• assert(ncs == 1) violated

• replay trail to find cause of error

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 19

Peterson Lock…

• extra code

• NO errors

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 20

Peterson Lock…

• // flag[i] = 1;

• assertion
violated

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 21

Peterson Lock…

• replay trail to find
error

• both processes
can pass through
statement 20
simultaneously

• critical section
entered by
process 0 in step
20 and ALSO by
process 1 in step
24

• error results from
ncs++ in step 20
and 24

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 22

Peterson Lock - C/C++ code that works

volatile int flag[2]; // NB volatile
volatile int victim; // NB volatile

inline void acquire(int me) { // variable names
changed

int j = 1 - me;
flag[me] = 1;
victim = me;
_mm_mfence(); // NB synchronisation
while (flag[j] && victim == me);

}

inline void release(int me) {
flag[me] = 0;

}

inline void init() {
flag[0] = flag[1] = 0;

}

variable
names
changed from
previous examples

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 23

Peterson Lock - C/C++ testing framework

UINT64 cnt = 0; // shared global counter
UINT64 t = getWallClockMS(); // get time

WORKER worker(void _pid) {
UINT64 lcnt = 0; // increment local counter
while (1) { //

lcnt++; // increment
aquire(_pid); // get lock
cnt++; // non atomic increment
release(_pid) // release lock
if (getWallClockMS() - t > NSECS*1000)

break;
}

}

• create two threads to
execute worker function
concurrently

• threads run for NSECS
concurrently

• when ALL threads have
finished, check that the
sum of the local counters
== cnt

• if NOT (cnt may be less
than the sum of the local
counters), the lock is
unsafe

• demonstration

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 24

Volatile

• flag and victim must be declared volatile

• description of volatile from Visual Studio documentation

objects that are declared as volatile are not used in certain optimizations because their
values can change at any time. The system always reads the current value of a volatile
object when it is requested, even if a previous instruction asked for a value from the
same object. Also, the value of the object is written immediately on assignment.

• to declare object pointed to by a pointer as volatile use:

volatile int *p; // what p points to is volatile

• to declare the pointer itself volatile use:

int * volatile p; // contents of p is volatile

• both

volatile int* volatile p; // p and what p points to are both volatile

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 25

Sequential Consistency

• programming model that can be used and understood by programmers

• definition: a multiprocessor system is sequentially consistent if the result of any
execution is the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in the order
specified by its program [Leslie Lamport 1979]

• an individual processor's memory accesses are made in program order
• accesses made by the different processors are interleaved arbitrarily AND memory

accesses are seen in the same order by ALL processors

memory

cpu0 cpu1 cpu2 cpu3

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 26

CPU Memory Ordering

• program order maybe relaxed to gain performance
• X -> Y means than X must complete before a later Y
• sequential consistency requires maintaining all 4 orderings

Rt -> Wt+n, Rt -> Rt+n, Wt -> Rt+n and Wt -> Wt+n

• relaxing Wt -> Rt+n is known as processor ordering or total store
ordering [reads can move ahead of writes]

• relaxing Wt -> Wt+n known as partial store ordering

• relaxing Rt -> Wt+n or Rt -> Rt+n gives variations known as weak
ordering, release consistency, …

• with relaxed CPU memory ordering, sequential consistency is
normally enforced at synchronisation points using serialising
instructions

L1 cache

READt+0

READt+1

WRITEt+2

READt+3

WRITEt+4

READt+5

CPU
memory
accesses

in
program

order

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 27

Intel IA32/x64 Memory Ordering

• IA32/x64 uses the processor ordering memory model [relax Wt -> Rt+n]

• see section 8.2 on Memory Ordering in Intel® 64 and IA-32 Architectures Software
Developer’s Manual Volume 3A: System Programming Guide, Part 1 and Intel® 64
Architecture Memory Ordering White Paper

• explicit fence instructions are used to enforce memory ordering and to flush the CPU
write buffer so the writes are visible to other CPUs

 LFENCE load fence doesn't read ahead until instruction executed

 SFENCE store fence flushes all writes from write buffer to L1 cache before
executing instruction

 MFENCE memory fence flushes all writes from write buffer to L1 cache before
executing instruction AND …
doesn't read ahead until instruction executed

http://download.intel.com/design/processor/manuals/253668.pdf
http://www.multicoreinfo.com/research/papers/2008/damp08-intel64.pdf

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 28

Serializing Instructions

• from a hardware perspective...

• CPU has an internal write buffer
which is used to buffer writes to the
memory hierarchy [for improved
performance]

• data in write buffer not visible to
other CPUs until written to L1 cache
[written by CPU asynchronously]

• SFENCE and MFENCE wait until write
buffer flushed to cache

• MFENCE enforces sequential
consistency (while data in write
buffer, CPUs can read different values
for the same memory address)

shared
memory

 cache coherent bus

cache

visible to all CPUs

cache cache

CPU

write
buffers

reads

CPU

write
buffers

reads

CPU

write
buffers

reads

CPU may
read ahead

writes to L1 cache seen "instantaneously" by
ALL processors

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 29

Bakery Lock

• Leslie Lamport CACM Aug 1974 [2013 A. M. Turing Award Winner]

• algorithm works with N threads

• think of a baker’s shop

• customers enter door and obtain a unique ticket number from a ticket dispenser
[tickets issued in ascending order]

• customers then served in ticket order

• the problem is how to obtain a unique ticket without using any atomic instructions
[straightforward with a modern CPU if the right atomic instruction is available]

• often called a ticket lock

• let’s examine a C/C++ version of the code from the original paper

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 30

Bakery Lock
1 int number[MAXTHREAD]; // thread IDs 0 to MAXTHREAD-1
2 int choosing[MAXTHREAD];

3 void acquire(int pid) { // pid is thread ID
4 choosing[pid] = 1;
5 int max = 0;
6 for (int i = 0; i < MAXTHREAD; i++) { // find maximum ticket
7 if (number[i] > max)
8 max = number[i];
9 }

10 number[pid] = max + 1; // our ticket number is maximum ticket found + 1
11 choosing[pid] = 0;
12 for (int j = 0; j < MAXTHREAD; j++) { // wait until our turn i.e. have lowest ticket
13 while (choosing[j]); // wait while thread j choosing
14 while (number[j] && ((number[j] < number[pid]) || ((number[j] == number[pid]) && (j < pid))));
15 }
16 }

17 void release(int pid) {
18 number[pid] = 0; // release lock
19 }

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 31

Bakery Lock

• how does the algorithm work?

• consider 3 threads numbered 0, 1 and 2
• imagine thread2 holds lock and number[] = [0, 0, 2]

• if thread0 and thread1 concurrently execute the code to get a ticket what, ticket values
can be returned?

• NB: number[] can be changed by other threads while a thread is obtaining its ticket

• 3, 4 or 4, 3 or 3, 3 or 1, 2 or 2, 1 or 1, 1 ??

• since threads can be issued with the same ticket number, threadID is used as a
differentiator [thread with lower threadID given priority]

• when thread releases lock it sets number[threadID] = 0

• what is the maximum ticket value? can algorithm handle ticket value wrap around?
• why is the while (choosing[j]) loop needed?
• what happens if thread goes to sleep choosing or holding lock?

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 32

Bakery Lock...

• the necessity for variable choosing may not be obvious

• there is no 'lock' around lines 5 to 10 where the maximum ticket is calculated

• suppose choosing was removed and two processes computed the same maximum
ticket

• if the higher-priority process was pre-empted before setting its number[i], the low-
priority process will see that the other process has a number of zero, and enter the
critical section; later, the higher-priority process may also enter the critical section
resulting in two processes entering the critical section at the same time

• the Bakery Algorithm uses the choosing variable to make the assignment on line 10
appear atomic

• process pid will never see a number equal to zero for a process j that is going to pick the
same number as pid

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 33

Using Spin to check the Bakery Lock algorithm

• following statement forms a key part of the Bakery Lock algorithm

while (number[j] && ((number[j] < number[pid]) || ((number[j] == number[pid]) && (j < pid))));

• at first sight, this statement accesses number[j] three times, number[pid] twice, j four
times and pid twice

• must make sure that possible interleaved accesses to these variables by the multiple
processes at runtime are correctly modelled [think individual memory accesses]

_pid, j and number[pid] are essentially local to the process, NO problem
number[j] can be changed asynchronously by other processes
ASSUME that the compiler would generate code that only makes one access to
number[j] by transforming statement into

while ((v = number[j]) && ((v < number[pid]) || ((v == number[pid]) && (j < pid))));
where v is a local variable

• THUS original statement can be used AS IS, but what would happen if compiler
generated code such that number[j] was read 3 times?

SPIN, PETERSON AND BAKERY LOCKS

CS4021/4521 © 2018 jones@scss.tcd.ie School of Computer Science and Statistics, Trinity College Dublin 27-Sep-18 34

Tutorial 1

• Bakery or Black and White lock

• prove lock has the following desirable properties: safety, deadlock free, liveness and
starvation free

• will discuss how to test for liveness and starvation freedom later

• need to get Spin working on laptop/desktop

• the Bakery Lock state space is unbounded as there is an interleave where the
allocated ticket number keeps increasing

 need to bound state space eg. 3 processes (N) each getting lock 3 times (CNT)
 takes a couple of seconds to prove safety property if N = 3 and CNT = 3

• the Black and White Lock state space is bounded as max ticket is 2N

 takes a couple of seconds to prove safety property if N = 3 and a couple of
hundred seconds if N = 4

